
Submitted 17 February 2015
Accepted 24 May 2015
Published 23 June 2015

Corresponding author
Erick de la Barrera,
delabarrera@unam.mx

Academic editor
Harpinder Sandhu

Additional Information and
Declarations can be found on
page 9

DOI 10.7717/peerj.1021

Copyright
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ABSTRACT
Potential ecophysiological responses to nitrogen deposition, which is considered
to be one of the leading causes for global biodiversity loss, were studied for the
endangered endemic Mexican epiphytic orchid, Laelia speciosa, via a shadehouse
dose-response experiment (doses were 2.5, 5, 10, 20, 40, and 80 kg N ha−1 yr−1)
in order to assess the potential risk facing this orchid given impending scenarios
of nitrogen deposition. Lower doses of nitrogen of up to 20 kg N ha yr−1, the
dose that led to optimal plant performance, acted as fertilizer. For instance, the
production of leaves and pseudobulbs were respectively 35% and 36% greater for
plants receiving 20 kg N ha yr−1 than under any other dose. Also, the chlorophyll
content and quantum yield peaked at 0.66 ± 0.03 g m−2 and 0.85 ± 0.01,
respectively, for plants growing under the optimum dose. In contrast, toxic effects
were observed at the higher doses of 40 and 80 kg N ha yr−1. The δ13C for leaves
averaged −14.7 ± 0.2h regardless of the nitrogen dose. In turn, δ15N decreased
as the nitrogen dose increased from 0.9 ± 0.1h under 2.5 kg N ha−1yr−1 to
−3.1 ± 0.2h under 80 kg N ha−1yr−1, indicating that orchids preferentially
assimilate NH+

4 rather than NO−

3 of the solution under higher doses of nitrogen.
Laelia speciosa showed a clear response to inputs of nitrogen, thus, increasing rates of
atmospheric nitrogen deposition can pose an important threat for this species.

Subjects Ecology, Environmental Sciences, Plant Science, Soil Science, Coupled Natural and
Human Systems
Keywords Acid rain, Biodiversity loss, CAM, Conservation physiology, δ15N, Nitrogen pollution,
Stable isotopes, Global change, Plant nutrition

INTRODUCTION
Anthropogenic atmospheric nitrogen deposition is considered among the leading global

causes of biodiversity loss (Vitousek, 1994; Chapin et al., 2000; Sala et al., 2000). While

nitrogen is an essential nutrient for all living organisms, its accelerated release to the

atmosphere and ultimate deposition has caused saturation of various ecosystems around

the world, leading to significant biodiversity loss by direct toxicity, acidification, and

nutrient imbalances between nitrogen and other major nutrients (Aber et al., 1989; Bauer
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et al., 2004; Le Bauer & Treseder, 2008; Bobbink et al., 2010; Templer, Pinder & Goodale,

2012). Most studies regarding the effects of nitrogen deposition on biodiversity have

been conducted in the USA and Europe, while studies from megadiverse countries are

scant (Bobbink et al., 2010). Considering that the latter countries tend to have developing

economies and accelerated industrialization processes, it is urgent to determine the effects

that current and future nitrogen deposition rates may have on their local biodiversities

(Austin et al., 2013).

A life-form particularly susceptible to the noxious effects of nitrogen deposition are

epiphytic plants, such as certain species of orchids and bromeliads, given their reliance

on atmospheric sources for nutrients and water (Zotz & Asshoff, 2010; Zotz et al., 2010;

Mondragón, Valverde & Hernández-Apolinar, 2015). In this respect, Laelia speciosa (Kunth.)

Shltr. (Orchidaceae) is an endemic, endangered orchid from central Mexico that has a

cultural importance in Michoacán. Not only the plant is collected for its attractive flowers,

but juice is extracted from its pseudobulbs and mixed with maize cane pith to produce a

paste that is used for the production of sacred art in West Central Mexico (Soto-Arenas &

Solano-Gómez, 2007). In addition to extractive pressure, this species faces environmental

challenges considering that oak forests, to which this species is restricted, are likely to be

severely reduced during the present century (Villers-Ruiz & Trejo-Vazquez, 2000; Rehfeldt

et al., 2012). This study assessed whether nitrogen deposition can also pose a threat to

this species. However, because current rates of nitrogen deposition are rather low within

the area of distribution for L. speciosa (Dı́az-Álvarez et al., 2014), it was deemed necessary

to conduct a shadehouse dose-response experiment to determine the effects of potential

future nitrogen deposition on this plant.

Indeed, the purpose of this study was to determine some ecophysiological responses of

the endangered neotropical epiphytic orchid Laelia speciosa by means of a dose–response

shadehouse experiment, in which, the organ production, chlorophyll content, chlorophyll

fluorescence, carbon and nitrogen content and isotopic signatures were evaluated for

assessing the potential risk that increasing rates of nitrogen deposition pose for this species.

MATERIALS AND METHODS
Plant material
Laelia speciosa is a sympodial epiphytic orchid with big and showy flowers that have pink

to lilac-purple petals and a white lip. Flowers are produced during the spring, while

an annually produced carbon-storing pseudobulb develops during the summer. Laelia

speciosa grows in sub-humid temperate climates of central Mexico, between 1250 and

2500 m where its predominant phorophyte Quercus deserticola is also found (Soto-Arenas

& Solano-Gómez, 2007).

Two-year old plants of Laelia speciosa obtained by in vitro propagation were transferred

into 2L plastic pots containing tezontle (particles were 2–5 cm in diameter), a very porous

volcanic rock that is extensively utilized for gardening and hydroponic horticulture

given its suitable physicochemical properties (Vargas-Tapia et al., 2008; Yañez-Ocampo

et al., 2009). Organic matter was removed from this tezontle by submersion in a SO4H2
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aqueous solution (50% v/v) followed by a double rinse with deionized, distilled water. The

procedure was repeated thrice. The pots were placed in a shadehouse for 2 years at Uni-

versidad Nacional Autónoma de México, Campus Morelia (19◦38′55.9′′N;101◦13′45′′W;

1967 m, mean annual temperature of 18.3 ◦C, annual precipitation 773 mm; Servicio

Meteorológico Nacional, 2011), where they were watered every other week until the start

of the experiment. A total of 120 plants were selected at random and assigned to one of six

groups, each with 20 plants, which received different doses of nitrogen. At the start of the

experiment, the plants had 4 pseudobulbs and one leaf (15 cm in length).

Nitrogen deposition scenarios
Starting on 1 October 2011, the plants were watered weekly over two months with 50 ml

of a modified Hoagland No. 2 solution from which the nitrogen was omitted to be able to

simultaneously supply suitable amounts of nutrients and manipulate the dose of nitrogen

dispensed to plants (Hoagland & Arnon, 1950; Nobel & de la Barrera, 2002). At the end of

this period, six simulated atmospheric deposition scenarios were applied by adding 1, 4, 8,

16 or 32 mM of NH4NO3 to the watering solution, equivalent to 2.5, 10, 20, 40, or 80 kg

of N ha−1 yr−1 respectively. In this respect, a threshold for plant physiological damage

has been observed at 20 kg N ha−1 yr−1, while rates of 40 kg N ha−1 yr−1 are common in

certain parts of Mexico City (Britto & Kronzucker, 2002; Secretaria del Medio Ambiente del

Gobierno del Distrito Federal, 2012). The range of doses considered was chosen to establish

the threshold for physiological damage for L. speciosa, and to determine the effects of depo-

sition rates that are likely to occur during the present century. All amounts were calculated

according to the area of the pot of 201 cm2. Weekly applications of 50 ml of the experi-

mental solutions were conducted over 26 weeks, from December 2011 to June 2012. This

period corresponds to the growth season and reproductive development of Laelia speciosa

(Halbinger & Soto, 1997; Soto-Arenas, 1994; Soto-Arenas & Solano-Gómez, 2007). Irrigation

was carried out on the whole surface of the pot, the coarse substrate allowed the complete

drainage of the nutrient solution, simulating what occurs in the canopy.

Physiological responses
Organ production
The emergence of flowers, which are displayed for a few weeks, was recorded weekly.

In turn, the total production of new leaves and pseudobulbs, which are persistent, was

recorded at the end of the experiment.

Chlorophyll content
Leaf discs were obtained with a cork borer (12-mm in diameter) from 5 plants per nitrogen

deposition scenario to determine the concentration of chlorophyll a, chlorophyll b, and

total chlorophyll in the plant tissue. The photosynthetic pigments were extracted by mac-

erating leaf tissue with a chilled (3 ◦C) mortar and pestle in an aqueous solution of acetone

(80% v/v) and brought to a final volume of 20 ml. Absorbance was measured at 663 and

646 nm with an EZ 301 spectrophotometer (Perkin Elmer, Waltham, Massachusetts, USA).

Chlorophyll concentration was calculated following Lichtenthaler (1987).
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Chlorophyll fluorescence (Fv/Fm)
The maximum yield of the photosystem II (the ratio of variable to maximum fluorescence;

Fv/Fm) was measured with an Opti-Science 05-30p Fluorometer (Hudson, New

Hampshire, USA). Measurements were carried out before dawn, a common practice in

plant ecophysiology (Maxwell & Johnson, 2000), for the leaves of five individuals per dose

of nitrogen on 29 June and 2 July 2012.

Carbon and nitrogen content and isotopic composition
The leaves of plants growing under different nitrogen doses were collected on 4 July 2012

and dried at 80 ◦C in a gravity convection oven until reaching constant weight. This

temperature has been found to be adequate for tropical succulents, whose membrane

proteins can withstand temperatures that are substantially higher than for non-succulent

species without incurring in damage (Nobel & de la Barrera, 2002; Drennan, 2009). The

dried leaves were ground to a fine powder in a ball mill (Retsch MM300; Retsch, Vienna,

Austria), wrapped into tin capsules (Costech Analytical, Inc., Valencia, California, USA),

and weighed with a microbalance (0.01 mg, Sartorius, Göttingen, Germany). For each

sample, the carbon and nitrogen content, as well as their isotopic proportions, were

determined at the Stable Isotope Facility, University of Wyoming (Laramie, Wyoming,

USA), with a Carlo Erba EA 1110 elemental analyzer (Costech Analytical Inc., Valencia,

California, USA) attached to a continuous flow isotope ratio mass spectrometer (Finnigan

Delta Plus XP, Thermo Electron Corp, Waltham, Massachusetts). Carbon and nitrogen

isotope ratios, reported in parts per thousand, were calculated relative to the Vienna

Pee Dee Belemnite (V-PDB) or atmospheric air standards, respectively. The analytical

precision for δ13C was ±0.03h (SD) and ±0.06h (SD) for δ15N. The natural abundances

of 13C and 15N were calculated as:

δ13C
(h versus V-PDB)

= (Rsample/Rstandard − 1) × 1000

δ15N
(h versus at-air) = (Rsample/Rstandard − 1) × 1000

where, R is the ratio of 13C/12C for carbon and 15N/14N for nitrogen isotope abundance

for a given sample (Ehleringer & Osmond, 1989; Evans et al., 1996).

Statistical analyses
The effect of the simulated nitrogen deposition on organ production for Laelia speciosa

was evaluated by means of a Kruskal-Wallis non-parametric ANOVA, because normality

of data was not satisfied, followed by post-hoc Tukey tests (P ≤ 0.05). In turn, differences

in the response of chlorophyll content, chlorophyll fluorescence, carbon and nitrogen

content, and δ13C and δ15N, which achieved normality, were evaluated with a one-way

ANOVA followed by the Holm-Sidak post-hoc test (P ≤ 0.05). All analyses were conducted

on SigmaPlot 12 (Systat Software Inc., San Jose, California, USA).
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Table 1 Statistical analyses. Kruskal-Wallis one-way ANOVA and parametric one-way ANOVA for
the responses of Laelia speciosa individuals growing in a shadehouse under various rates of simulated
nitrogen deposition.

Response to nitrogen dose

d.f. F P

Leaves 5 8.47 0.001

Pseudobulbs 5 7.04 0.001

Flowers 5 1.94 0.077

Total chlorophyll 5 15.68 0.001

Chla 5 6.67 0.001

Chlb 5 10.47 0.001

Fv/Fm 5 82.5 0.001

Carbon content 5 6.44 0.001

Nitrogen content 5 177.5 0.001

δ15N 5 15.68 0.001

δ13C 5 2.65 0.057

Figure 1 Organ production. Number of new leaves (open bars), pseudobulbs (right hatched bars) and
flowers (left hatched bars) that developed on plants of Laelia speciosa that were watered with different
doses of nitrogen. Data are shown as mean ± S.E (n = 20 plants per dose of nitrogen). Different letters
indicate significant differences (p < 0.05) for organs.

RESULTS
Organ production
After 26 weeks of watering the plants with different doses of nitrogen, the production of

new organs was greater for those individuals that received 20 kg N ha−1 yr−1 than for

those individuals receiving other nitrogen doses (Table 1; Fig. 1). In particular, 1.0 ± 0.1

Dı́az-Álvarez et al. (2015), PeerJ, DOI 10.7717/peerj.1021 5/14

https://peerj.com
http://dx.doi.org/10.7717/peerj.1021


leaves were produced per plant over the course of the experiment under most doses,

except for the plants that received 20 kg N ha−1 yr−1, which produced 35% more leaves

(P ≤ 0.001). Similar was the case for the 0.9 ± 0.1 pseudobulbs produced per plant under

most doses, except for the plants that received 20 kg N ha−1 yr−1, which produced 36%

more pseudobulbs (P ≤ 0.001). In contrast, flowering was not significantly influenced

by nitrogen dose (P = 0.077), with a production of 0.3 ± 0.04 flowers per plant over the

course of the experiment (Table 1; Fig. 1).

Chlorophyll fluorescence
The quantum efficiency of photosystem II (Fv/Fm) was similar among the groups of

orchids that received up to 20 kg N ha−1 yr−1 amounting to 0.8, while a significant

decrease of 23% was observed for plants irrigated with higher concentrations of nitrogen

(P ≤ 0.001; Table 1; Fig. 2A).

Chlorophyll content
Total chlorophyll content for the leaf tissue of Laelia speciosa increased as the nitrogen

dose increased, peaking at 0.7 ± 0.0 g m−2 for plants irrigated with 20 kg N ha−1 yr−1

(P ≤ 0.001; Table 1; Fig. 2B), while the higher doses of nitrogen resulted in a 38% reduction

of the pigment. Similarly, the chlorophyll a concentration of 0.5 ± 0.4 g m−2 was the

maximum for plants growing under 20 kg N ha−1yr−1, and it was 30% lower under all

other nitrogen doses (P ≤ 0.001). In turn, chlorophyll b did not respond to nitrogen,

averaging 0.1 ± 0.0 g m−2 regardless of the dose under which plants grew (Table 1; Fig. 2B).

Carbon and nitrogen content and isotopic composition
The carbon content of Laelia speciosa increased with the nitrogen dose peaking at

46.1 ± 0.3% (dry mass basis) at 20 and 40 kg N ha−1 yr−1 and decreased to 45.2 ± 0.3% at

80 kg N ha−1 yr−1 (P ≤ 0.001; Table 1; Fig. 2C).

The nitrogen content for Laelia speciosa also increased with the nitrogen dose. For the

plants that received up to 10 kg N ha−1 yr−1 the nitrogen content averaged 1.2 ± 0.0% (dry

mass basis), reaching 2.4 ± 0.0% at 80 kg N ha−1 yr−1 (P ≤ 0.001; Table 1; Fig. 2D).

The δ13C for leaves of Laelia speciosa averaged −14.7 ± 0.2h and did not change with

the nitrogen dose (P = 0.057; Table 1). In contrast, the leaf δ15N significantly decreased at

higher nitrogen doses. The δ15N averaged 0.9 ± 0.1h for plants that received up to 10 kg

N ha−1 yr−1, a δ15N similar to the δ15N of 1.1 ± 0.1h measured for the NH4NO3 utilized

for the nutrient solution. The higher doses of nitrogen led to significant decreases of δ15N,

reaching the minimum of −3.1 ± 0.2h for plants growing under 80 kg N ha−1 yr−1

(P ≤ 0.001; Table 1; Fig. 2E).

DISCUSSION
An intermediate nitrogen dose of 20 kg N ha−1 yr−1 was the most favorable for

the production of new organs by Laelia speciosa. Lower doses did not improve plant

development substantially but higher doses were inhibiting. In this respect, while nitrogen

availability may increase leaf production and growth, large quantities of nitrogen limit the
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Figure 2 Ecophysiological responses for leaves of L. speciosa to simulated nitrogen deposition. (A) Ra-
tio of variable to maximum chlorophyll fluorescence; (B) Tissue content (area basis) for total chlorophyll
(circles), chlorophyll-a (triangles), and chlorophyll-b (square); (C) Carbon and (D) nitrogen content
(dry mass basis) and (E) δ15N. Data are shown as mean ± S.E. (n = 5 plants per dose of nitrogen). For
each panel, different letters indicate significant differences (P < 0.05).
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availability of other nutrients, restricting the plant’s ability to produce foliar mass (Evans,

1989; Asner, Seastedt & Townsend, 1997; Aber et al., 1998; Sánchez et al., 2000; Zotz &

Asshoff, 2010; Dı́az-Álvarez et al., 2014). Such behavior was observed for Laelia speciosa that

showed a substantial reduction in the production of new organs, suggesting noxious effects

of the simulated nitrogen deposition. The effect of nitrogen fertilization on Cymbidium

hybrids is an increased pseudobulb production (Barman et al., 2004). In turn, pseudobulb

growth for Dendrobium nobile peaks at nitrogen doses of 1.9 mM (Bichsel, Starman &

Yin-Tung, 2008).

Total chlorophyll content is proportional to the content of nitrogen in leaves, which

typically ranges between 0.4 and 0.5 g m−2 (Evans, 1989; Nobel, 1999; Nobel & de la

Barrera, 2002). Indeed, for Laelia speciosa, chlorophyll content increased with the dose of

nitrogen, suggesting that this plant was able to assimilate and utilize the supplied nitrogen

for the production of photosynthetic pigments. However, the higher doses also resulted

in a drastic decrease of the chlorophyll content, as has been documented for other plant

species (Baxter, Emes & Lee, 1992; Majerowicz et al., 2000; Lin et al., 2007; Arróniz-Crespo

et al., 2008; Ying-Chun et al., 2010). Such a decrease in the chlorophyll content can be

explained by the resulting imbalance of the nitrogen to magnesium ratio in the leaf

(Nakaji et al., 2001; Wortman et al., 2012). Excessive nitrogen in the cell promotes release

of protons (H+) and accumulation of phenolic compounds and hydrogen peroxide, as a

result, the pH can be altered impeding chlorophyll production and loss of Mg2+ (Mangosá

& Berger, 1997; Sánchez et al., 2000; Britto & Kronzucker, 2002). Changes in chlorophyll

content for Laelia speciosa were accompanied by changes in the efficiency of photosystem

II, which can be attributed to oxidative stress in the thylakoids that results in the blockage

of electron transport to the oxidation site, as a consequence of low available energy for

photosynthesis (Maxwell & Johnson, 2000; Poorter, 2000; Hogewoning & Harbinson, 2007;

Lichtenthaler et al., 2007; Baker, 2008; Calatayud et al., 2008; Guidi & Degl’Innocenti, 2008;

Massacci et al., 2008).

Plants tend to increase their rates of carbon fixation when nitrogen is added (Brown

et al., 1996; Bauer et al., 2004; Le Bauer & Treseder, 2008). However, under conditions

of chronic nitrogen additions the photosynthetic capacity is inhibited because most of

the excess nitrogen is not invested into the primary processes of carboxylation (Brown et

al., 1996; Bauer et al., 2004). This also causes an increase and later reduction in carbon

content for plants subjected to increasing doses of nitrogen, as was observed here for

Laelia speciosa. However, the observed δ13C values for Laelia speciosa which were within

the range for CAM plants, did not change under the different nitrogen doses utilized,

contrasting with δ13C measured for C3 plants subjected to supplementary nitrogen that

became increasingly negative (Raven & Farquhar, 1990; Magalhaes, Huber & Tsai, 1992).

Isotopic discrimination against 15N increases in plants as the nitrogen availability

increases because its assimilation is more energetically costly than for the more abundant
14N. This so called isotopic effect results in δ15N values of the product that are lower

than those of the substrate (Evans, 2001; Kolb & Evans, 2003; Ariz et al., 2011). The

observed discrimination against 15N for Laelia speciosa leaves has also been observed
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for various species, such as Oryza sativa, Pinus sylvestris, and Trapa japonica, species

which discriminate between 0.9 and 13h when supplied with increasing doses of

nitrogen in form of NH+

4 (Yoneyama et al., 1991; Högberg et al., 1999; Yoneyama et

al., 2001; Maniruzzaman & Asaeda, 2012). When the nitrogen source is NH+

4 , this

compound is directly assimilated by the plant cell as amino acids and the involved enzyme,

glutamine-synthetase, can discriminate up to 17h. On the contrary, plants watered with

NO−

3 have positive δ15N values that have been associated with nitrogen lost via root efflux

and exudates or loss of NH3 through the stomata, processes that favor the lighter isotope

(O’Deen, 1989; Yoneyama et al., 2001; Ariz et al., 2011).

Laelia speciosa showed a clear response to increasing doses of nitrogen. Doses of up to

20 kg N ha−1 year−1 enhanced its physiological performance, while higher doses were

toxic. The rates of nitrogen deposition in México, where Laelia speciosa is endemic,

could exceed 25 kg N ha−1 year−1 by mid-century (Galloway et al., 2004; Phoenix et

al., 2006; Galloway et al., 2008). As a result, nitrogen deposition poses an actual threat

for the persistence of this endangered species as other components of global change

represent for many other epiphytic vascular plants (Zotz et al., 2010; Mondragón, Valverde

& Hernández-Apolinar, 2015). Future works should consider the effects of nitrogen

deposition on wild populations of this and other tropical epiphytic plants. A better

understanding of the effects of increasing nitrogen deposition from human activities is

of urgent importance, as species ecophysiological response, as those studied here, may be

affected, with potentially negative consequences in ecosystem biodiversity and function.

ACKNOWLEDGEMENTS
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funders had no role in study design, data collection and analysis, decision to publish, or

preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

Dirección General del Personal Académico: PAPIIT IN224910, RN204013.

Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), UNAM.

Consejo Nacional de Ciencia y Tecnologı́a, México.
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• Edison A. Dı́az-Álvarez conceived and designed the experiments, performed the

experiments, analyzed the data, wrote the paper, prepared figures and/or tables,

reviewed drafts of the paper.

• Roberto Lindig-Cisneros conceived and designed the experiments, contributed

reagents/materials/analysis tools, reviewed drafts of the paper, supervised plant

nutrition experiments.

• Erick de la Barrera conceived and designed the experiments, contributed

reagents/materials/analysis tools, wrote the paper, prepared figures and/or tables,

reviewed drafts of the paper.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/

10.7717/peerj.1021#supplemental-information.

REFERENCES
Aber JD, McDowell W, Nadelhoffer KJ, Magill A, Berntso GM, Kamakea M, McNulty S,

Currie W, Rustad L, Fernández I. 1998. Nitrogen saturation in temperate forest
ecosystems—hypothesis revisited. Bioscience 48:921–934 DOI 10.2307/1313296.

Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM. 1989. Nitrogen saturation in northern forest
ecosystems. Bioscience 39:378–386 DOI 10.2307/1311067.
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Lichtenthaler HK, Ač A, Marek MV, Kalina J, Urban O. 2007. Differences in pigment
composition, photosynthetic rates and chlorophyll fluorescence images of sun
and shade leaves of four tree species. Plant Physiology Biochemistry 45:577–588
DOI 10.1016/j.plaphy.2007.04.006.

Lin Y, Duan L, Yang YS, Zhao DW, Zhang DB, Hao JM. 2007. Contribution of simulated nitrogen
deposition to forest soil acidification in area with high sulfur deposition. Environmental Science
28:640–646.

Magalhaes JR, Huber DM, Tsai CY. 1992. Evidence of increased 15N ammonium
assimilation in tomato plants with exogenous a-ketoglutarate. Plant Science 85:135–141
DOI 10.1016/0168-9452(92)90108-X.

Majerowicz N, Kerbauy GB, Nievola CC, Suzuki RM. 2000. Growth and nitrogen metabolism of
Catasetum fimbriatum (Orchidaceae) grown with different nitrogen sources. Environmental and
Experimental Botany 44:195–206 DOI 10.1016/S0098-8472(00)00066-6.
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In: Gay-Garcı́a C, ed. México: una visión hacia el siglo XXI. El cambio climático en México.
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