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ABSTRACT	42	

Atmospheric nitrogen deposition poses a major threat to global biodiversity. Tropical epiphytic plants are especially 43	

at risk given their reliance on atmospheric sources of nutrients. The leaf, pseudobulb, and root carbon and nitrogen 44	

content, C:N ratio, as well as the nitrogen isotopic composition were studied for individuals of Laelia speciosa from 45	

a city and from an oak forest in Mexico. The nitrogen content of leaves was similar between the city and the oak 46	

forest, reaching 1.3 ± 0.2% (dry mass). The δ15N of leaves, pseudobulbs, and roots reached 5.6 ± 0.2‰ in the city, 47	

values found in sites exposed to industrial and vehicular activities. The δ15N for plant from the oak forest amounted 48	

to –3.1 ± 0.3‰, which is similar to values measured from sites with low industrial activities. Some orchids such as 49	

Laelia speciosa produce a single pseudobulb per year, i.e., a water and nutrient storage organ, so the interannual 50	

nitrogen deposition was studied by considering the ten most recent pseudobulbs for plants from either site formed 51	

between 2003 and 2012. The C:N ratio of the of ten most recent pseudobulbs from the oak forest, as well as that of 52	

the pseudobulbs formed before 2010 for plants in the city were indistinguishable from each other, averaging 132.4 ± 53	

6.5, while it was lower for the two most recent pseudobulbs in the city. The δ15N values of pseudobulbs from the oak 54	

forest averaged ‒4.4 ± 0.1‰ for the entire series. The δ15N ranged from 0.1 ± 1.6‰ for the oldest pseudobulb to 4.7 55	

± 0.2‰ for the pseudobulb formed in 2008 onwards. Isotopic analysis and the C:N ratio for L. speciosa revealed that 56	

rates of nitrogen deposition were higher in the city than in the forest. The δ15N values of series of pseudobulbs 57	

showed that it is possible to track nitrogen deposition over multiple years.  58	

 59	

Key words: Atmospheric pollution; Conservation Physiology; global change; industrial activities; Neo-Volcanic 60	

Axis.  61	
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Introduction	62	

Atmospheric nitrogen deposition has more than doubled since the mid-20th century as a result of an increased 63	

release of reactive nitrogen species from industrial and agricultural origin (Phoenix et al. 2006; Galloway et al. 64	

2008). This important component of global change has driven a loss of biodiversity, which has been widely 65	

documented in Europe, the USA, and China (Xue-Yan et al. 2008; Bobbink et al. 2010). However, studies are scant 66	

for megadiverse countries like Mexico, which tend to have developing economies and ongoing industrialization 67	

processes, making it urgent to determine the effects of nitrogen deposition on their biodiversities (Austin et al. 68	

2013). In this respect, an interest on tracing sources of deposition has increased and it can be studied by means of the 69	

isotopic composition of the vegetation. 70	

 Atmospheric nitrogen deposition confers a distinctive isotopic signature to vegetation. The isotopic 71	

composition of the reactive nitrogen species (NOx and NHx) that result from the atmospheric N2 rupture can be 72	

either positive or negative (Heaton1990). In particular, the NOx from electric plants, coal, gasoline, diesel, and trash 73	

burning has δ15N between +3.7 and +26‰ (Widory 2007). However, these isotopic values can also be negative, 74	

ranging from –13 to –2‰ (Redling et al. 2013). Whether the values are negative or positive will depend on the type 75	

of material burnt, the nitrogen in the fuel, the various isotopic fractionations associated with the thermal production 76	

of NOx, when the fuel goes through the engine and is mixed with air O2 and N2 during the combustion (Liu et al 77	

2012; Felix et al. 2013; Felix and Elliot 2014). The δ15N of biogenic emissions (NHx) of soils in rural areas are 78	

negative and can fluctuate between –50 and –20‰, including, organic wastes of animals and volatilization of 79	

nitrogen from agriculture (Hoering 1957; Li and Wang 2008; Felix et al. 2012). Once emitted the NOx or the NHx 80	

react with various compounds in the atmosphere, such reactions involve isotopic fractionations, that result in 81	

compounds such as NO3
– and NH4

+, with different δ15N values in rain ranging from –15 to +15‰, the NH4
+ is more 82	

negative than the NO3
– (Heaton1990; Xiao and Liu 2002; Heaton et al. 2004; Elliot et al. 2009; Xiao et al. 2012). 83	

These isotopic values directly affect the 15N composition of plants of different sites. In particular, plants exposed to 84	

industrial and vehicular emissions tend to be 15N–enriched. For example, the δ15N of mosses growing close to busy 85	

urban roads range between –1 and 6‰, while plants from less polluted areas tend to be 15N depleted as is the case 86	

for mosses in rural areas, whose δ15N values range from –2 to –12‰ (Ammann et al. 1999; Pearson et al., 2000; 87	

Stewart et al., 2002; Liu et al. 2007; Power and Collins 2010). However, in cities where the industrial activities 88	
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release NHx, the δ15N of plants are more negative than in the field (Stewart et al. 2002; Liu et al. 2008; Xiao et al. 89	

2010). 90	

 A lifeform of particular interest for studying the effects of deposition is that of epiphytes, which account for 91	

up to 50% of vascular plant species in some tropical ecosystems and are particularly susceptible to atmospheric 92	

nitrogen deposition, given their reliance on atmospheric sources of nutrients (Mondragón et al. 2015). These plants, 93	

whose roots have no contact with the forest soil, where the nitrogen fractionation takes place, reflect the δ15N of the 94	

prevalent atmospheric nitrogen deposition (Delwiche and Steyn 1970; Hietz et al. 1999; Stewart et al. 2002; Zotz et 95	

al. 2010). 96	

 Laelia speciosa (Kunth) Schltr (Orchidaceae) is an endangered endemic epiphytic orchid from central 97	

Mexico with significant cultural importance (Halbinger and Soto-Arenas 1997). Vast numbers of individuals are 98	

illegally extracted and sold in streets and markets during May and June owing to their colorful flowers. This has 99	

caused a significant reduction of natural populations that has led to its special protection status by the environmental 100	

authority (Soto-Arenas and Solano-Gómez 2007; NOM-059-SEMARNAT-2010; Mondragón et al. 2015). 101	

Moreover, oak forests, the natural habitat for this orchid, are highly threatened by changes in land use and climate 102	

(Villers-Ruiz and Trejo-Vázquez 2000; Soto-Arenas and Solano-Gómez 2007; Rehfeldt et al. 2012; Gudiño et al. 103	

2015).  104	

 Under increasing rates of nitrogen deposition of up to 20 kg N ha-1 y-1, the carbon and nitrogen content 105	

increase and the C:N ratio decreases in epiphytes responding to increased photosynthetic rates (Díaz-Álvarez et al. 106	

2015). But higher doses of nitrogen can produce noxious physiological effects on epiphytes, given their direct 107	

exposure to the atmosphere (Hietz et al. 1999; Zotz et al. 2010). For instance, higher nitrogen causes the reduction of 108	

chlorophyll content and chlorophyll fluorescence, as well as the reduction of leaf and pseudobulb production for 109	

Laelia speciosa, for which increased tissue nitrogen content is concurrent with nitrogen isotopic fractionation (Díaz-110	

Álvarez et al. 2015). A plant’s ability to accumulate foliar mass is limited by large quantities of nitrogen, because 111	

the availability of other nutrients is limited. For instance, excessive availability of nitrogen results in an imbalance of 112	

the nitrogen to magnesium ratio in the leaf because the cell releases protons (H+), which lowers the pH and inhibits 113	

chlorophyll production causing the loss of Mg2+ (Mangosá and Berger, 1997; Sánchez et al. 2000; Nakaji et al. 114	

2001; Britto and Kronzucker, 2002; Wortman et al. 2012; Díaz-Álvarez et al. 2015). It is thus important to 115	

characterize the nitrogen deposition in the natural habitat of this species.  116	



6	
	

 Environmental changes, such as variation in air temperature and available water, have been studied over 117	

multiple years by determining the natural abundance of some stable isotopes in the vegetation. For instance, H, C, 118	

and O isotopes of cactus thorns and tree rings indicate the occurrence of droughts in the Sonoran Desert and 119	

temperature and precipitation variations in Europe (West et al. 2006; English et al. 2007; 2010; Cufar et al. 2014). 120	

Also, changes in nitrogen deposition have been determined from δ15N of tree rings in the tropics (Hietz et al. 2011; 121	

Van Der Sleen et al. 2015). In this respect, some orchids, including L. speciosa, produce one pseudobulb per year, 122	

which remains attached to the plant for several years (Soto-Arenas and Solano-Gómez 2007). Thus, these storage 123	

organs of water, C, and other nutrients could be useful to reconstruct the interannual variation of nitrogen deposition 124	

over the plant’s lifespan (Dressler 1981; Ng and Hew 2000; Soto-Arenas and Solano-Gómez 2007).  125	

 Leaf, pseudobulb, and root C and N content, C:N ratio, as well as the natural abundance of 15N were 126	

determined for individuals of L. speciosa growing in a city and growing in an oak forest in order to compare the 127	

signal that nitrogen deposition had on the tissue composition of this orchid at each site. In addition, series of 128	

annually produced pseudobulbs were analyzed to determine whether this orchid can record the historical changes on 129	

nitrogen deposition at either site. 130	

 131	

Materials and methods  132	

Study sites  133	

The effect that atmospheric deposition had on tissue nitrogen composition was evaluated for the orchid Laelia 134	

speciosa from two contrasting sites in central Mexico. The first site was the Instituto de Investigaciones en 135	

Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (19o 38’ 55.9” N; 101o 13’ 45” W), 136	

located in the city of Morelia whose population is 800,000 habitants. Here, the mean annual temperature and annual 137	

precipitation are 18.3 ºC and 773 mm, respectively, and dominant winds blow from the southwest and northwest 138	

(Servicio Meteorológico Nacional 2012; Instituto Nacional de Estadística y Geografía 2013). Orchids that had been 139	

rescued from a road construction site in 2004 were kept on the original oak branches of Quercus deserticola Trel. 140	

(Fagaceae) from which they were collected and placed inside a shadehouse. This shadehouse consists of a metallic 141	

structure surrounded with a shade-cloth (85% transmitance), including the top and sides, which allows the free 142	

movement of water and gases, while simulating a canopy leading to a temperature difference of up to 4 ºC below 143	

ambient at midday. 144	
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 The second site was one of the last natural refuges of Laelia speciosa in Mexico, an oak forest that is 145	

located at the Cerro el Olvido, Tzintzuntzán, Michoacán (19o 37’ 59” N, 101o 29’ 09” W, 2361 m; García-Cruz et al. 146	

2003). The dominant species at this site is Quercus deserticola which is the most common phorophyte for L. 147	

speciosa (Soto-Arenas 1994). Oak trees in this forest reach 10 m in height and grow in rocky, clay or clay-loam soils 148	

(unpublished observations). The mean annual temperature at Cerro el Olvido is 16.1 oC and the annual precipitation 149	

is 758 mm, with a rainy season from May to September, and the dominant winds blow from the southwest and the 150	

northwest (Servicio Meteorológico Nacional 2012). 151	

 152	

Characterization of the atmospheric nitrogen deposition 153	

Given that no infrastructure exists for measuring atmospheric pollution in the study region, the prevalent nitrogen 154	

deposition at each site was assessed by means of mosses. Indeed, mosses have been broadly utilized as bioindicators 155	

of atmospheric nitrogen deposition because their nitrogen content is correlated with the rates of deposition and 156	

because their isotopic fractionation during assimilation is nill, reflecting the δ15N values of the prevalent 157	

atmospheric deposition (Bragazza et al. 2005; Zechmeister et al. 2008; Wilson et al. 2009; Power and Collins 2010). 158	

In particular, the genus Braunia, which is widely distributed in various Mexican ecosystems including urban 159	

environments, has shown to be an adequate bioindicator of atmospheric nitrogen deposition (Arciga-Pedraza 2009; 160	

Cardenas and Delgadillo 2009). In order to determine the δ15N values of the atmospheric nitrogen deposition as well 161	

as to determine the differences in rates of deposition by means of the nitrogen content of the mosses, samples of the 162	

moss Braunia sp. growing on the same oak branches that the orchids and less than 15 cm away of them in the oak 163	

forest and in the city were collected. In addition, to preclude any contamination from organic material from the 164	

phorophyte, i.e., the so called canopy soil, moss samples were also collected from exposed granite rock in the oak 165	

forest or exposed concrete in the city. The moss samples were analyzed as described below.	166	

 167	

Plant material  168	

Laelia speciosa (Kunth) Schltr is a sympodial epiphytic orchid with big and showy flowers, pink to lilac-purple 169	

petals, and a white lip. Flowers are produced during the spring. This orchid grows in sub-humid temperate climates, 170	

between 1250 and 2500 m (Soto-Arenas and Solano-Gómez 2007). The most recent leaf, pseudobulb, and root were 171	

collected from 4 individuals at each site, whose leaf and root length ranged from 8 to 12 cm and 5 to 10 cm 172	
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respectively. In the oak forest, orchids were collected from the outer portion of trees where canopy soil cannot be 173	

formed given a lack of plant cover. Indeed, these plants were not in contact with decomposing plant material and 174	

were at a minimum height of 5 m above the ground and a minimum radial length of 3 m from the stem of Q. 175	

deserticola.  176	

 177	

Interannual atmospheric nitrogen deposition 178	

In order to assess whether the nutrient-storing pseudobulbs of L. speciosa can record the changes of atmospheric 179	

nitrogen deposition over multiple years, series of consecutive pseudobulbs comprised by the ten most recent organs 180	

were collected for 4 individuals from each site (Fig. 1) for conducting the C and N analyses described below. 181	

 182	

Carbon and nitrogen content and isotopic δ15N 183	

Plant material was dried at 80 ○C in a gravity convection oven until reaching constant weight (Drennan 2009; Díaz-184	

Álvarez et al. 2015). The dried plant samples were ground to a fine powder in a ball mill (Retsch MM300; Retsch, 185	

Vienna, Austria), wrapped into tin capsules (Costech Analytical, Inc. Valencia, California, USA), and weighed with 186	

a microbalance (0.01 mg, Sartorius, Göttingen, Germany). For each sample, the carbon and nitrogen content, as well 187	

as their δ15N values were determined at the Stable Isotope Facility, University of Wyoming (Laramie, Wyoming, 188	

USA), with a Carlo Erba EA 1110 elemental analyzer (Costech Analytical Inc., Valencia, CA, USA) attached to a 189	

continuous flow isotope ratio mass spectrometer (Finnigan Delta Plus XP, Thermo Electron Corp, Waltham, MA). 190	

Nitrogen isotope ratios, reported in parts per thousand, were calculated relative to atmospheric air standards. The 191	

natural abundances of 15N were calculated as: 192	

   δ15N (‰ versus air) = (Rsample/Rstandard ‒ 1) × 1000 193	

where, Rsample and Rstandard is the ratio of 15N/14N for the sample and standard respectively. (Ehleringer and Osmond 194	

1989; Evans et al. 1996). The analytical precision for δ15N was ± 0.06‰ (SD). 195	

 196	

Statistical analyses 197	

Data normality and homoscedasticity were confirmed before conducting the following statistical analyses. 198	

Atmospheric nitrogen deposition, characterized by means of the moss Braunia sp. from the two sites, was analyzed 199	

with a one-way ANOVA followed by pairwise Holm-Sidak post-hoc tests (P < 0.05). The effects of the site of 200	
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origin (two levels) on the nitrogen content, C:N ratio, and δ15N in L. speciosa organs (three levels) were analyzed by 201	

means of a two-way ANOVA followed by pairwise Holm-Sidak post-hoc tests (P < 0.05). In turn, differences 202	

between the series of 10 consecutive pseudobulbs from two different sites were analyzed by means of a nested 203	

ANOVA followed by Holm-Sidak post-hoc tests (P < 0.05). All analyses were conducted on R (version 2.12.2, R 204	

Core Team R Foundation for Statistical Computing, Vienna, Austria). 205	

 206	

Results  207	

Characterization of the atmospheric nitrogen deposition 208	

The nitrogen content of the mosses averaged 1.7 ± 0.1% (dry mass basis) regardless of the site (Tables 1, 2). Their 209	

C:N ratio averaged 21.5 ± 0.8 and no significant difference was found between sites. The δ15N reached 3.3 ± 0.1‰ 210	

in the city, contrasting with the –4.6 ± 0.9‰ measured in the oak forest (P < 0.05; Fig. 2).  211	

 212	

Carbon and nitrogen content and δ15N for Laelia speciosa 213	

The carbon content of leaves, pseudobulbs, and roots of Laelia speciosa in the city reached 44.4 ± 0.3 % (dry mass 214	

basis), it was 8.5% lower than for orchids in the oak forest (P < 0.05; Tables 1,2). In the city, the carbon content of 215	

pseudobulbs was 43.4 ± 0.2% and it was 10% lower than for the roots (P < 0.05). No significant differences were 216	

found between leaves and pseudobulbs (P = 0.12) nor between leaves and roots (P = 0.31). In the oak forest, the 217	

carbon content was similar among organs averaging 45.4 ± 0.2% (P ≥ 0.05). 218	

 The nitrogen content of pseudobulbs and roots in the city averaged 0.9 ± 0.1% (dry mass basis), and it was 219	

lower than for the leaves that reached 1.4± 0.1% (P < 0.05; Fig 3). The nitrogen content of leaves, pseudobulbs, and 220	

roots was different among each other in the oak forest (P < 0.05). The nitrogen content of leaves in the oak forest 221	

was similar to the nitrogen content of the leaves in the city and averaged 1.3 ± 0.2% (Fig 3; Table 1). Similar was 222	

the case for pseudobulbs and roots whose nitrogen content averaged 0.6 ± 0.1 and 0.9 ± 0.1% respectively for both 223	

sites (Table 2).  224	

 The C:N ratio was similar among the organs of orchids from the city, where it averaged 42.1 ± 1.5. In turn, 225	

the C:N ratio for the organs of orchids from the oak forest was different between pseudobulbs and leaves (P < 0.01) 226	

and between pseudobulbs and roots (P = 0.02). No significant differences were found between leaves and roots, 227	

whose C:N ratio averaged 49.7 ± 0.5 (P ≥ 0.05). The C:N ratio of orchids growing at the oak forest was generally 228	
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the same as that of orchids growing in the city. Indeed, a C:N ratio of 39.1 ± 2.5 was found for leaves of orchids 229	

from both sites, while it averaged 50.0 ± 2.0 for the roots. An exception was observed for the C:N ratio of 127.6 ± 230	

16.34 for pseudobulbs at the oak forest that was 62% higher than for the pseudobulbs in the city (P < 0.001; Fig. 2; 231	

Table 1). 232	

	 The δ15N values were positive for plants from the city and negative for plants from the oak forest (P < 233	

0.001). For the plants in the city, differences were found between leaves and roots (P = 0.01) and between 234	

pseudobulbs and roots (P = 0.02). However, no differences were found between leaves and pseudobulbs, averaging 235	

5.6 ± 0.01‰. For the orchids from the oak forest, δ15N averaged ‒3.9 ± 0.4‰ and no significant differences were 236	

found among organs (Table 1; Fig. 2)	237	

 238	

Interannual atmospheric nitrogen deposition 239	

The C:N ratios for the entire series of pseudobulbs of the plants from the oak forest, as well as the C:N ratios for the 240	

pseudobulbs formed in 2010 and before in the city were similar and averaged 132.4 ± 6.5 (Fig. 4, Table 3). In 241	

contrast, for the two most recent pseudobulbs that grew in the city the C:N ratios halved (P < 0.05). 242	

 The δ15N values of pseudobulbs from the oak forest were constant over one decade and averaged ‒4.4 ± 243	

0.1‰ for the entire series (P ≥ 0.05; Fig 5). In contrast, the δ15N values of pseudobulbs from the city showed a 244	

gradual increase from 0.1 ± 1.6‰, for the oldest pseudobulb formed at the rescue site in 2003, until a plateau was 245	

reached at 4.8 ± 0.3‰ for pseudobulbs formed 2007 onwards. 246	

 247	

Discussion  248	

 Plants tend to increase their photosynthetic rates as nitrogen becomes more available and, in consequence, 249	

they accumulate more carbon (Brown et al. 1996; Shangguan et al. 2000; Bauer et al. 2004; Le Bauer and Treseder 250	

2008; Díaz-Álvarez et al. 2015). For example, when L. speciosa is exposed to simulated nitrogen deposition, its leaf 251	

carbon content peaks at 46% of the dry mass under 20 kg of N ha–1 year–1, nearly 5% higher than for plants exposed 252	

to 2.5 kg of N ha–1 year–1 (Díaz-Álvarez et al. 2015). In the present study, the carbon content of the bioindicator 253	

Braunia sp. and of the orchids, which was the same at both sites, suggest that nitrogen deposition is not high enough 254	

to induce significant changes in CO2 fixation nor changes in the tissue carbon content 255	
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In the present study, the nitrogen content for the moss from both sites was consistent with values measured 256	

under low deposition rates, which usually amounts to 1.5% and up to 2.4% in some monocots (Chapman 1965; 257	

Mills and Jones 1996; Epstein 1972; 1999). The leaves of L. speciosa from both sites also had similar nitrogen 258	

content with their values being similar to those of succulent leaves of several species of epiphytic orchids from low 259	

nitrogen deposition environments (Hietz et al. 1999; Wania et al. 2002; Cardelús and Mack 2010; Mardegan et al. 260	

2011). The nitrogen content for the plants in this study was substantially lower than for plants from cities with high 261	

rates of nitrogen deposition such as London or Mexico City (Power and Collins 2010; Arciga-Pedraza 2010). 262	

While carbon and nitrogen content increase at different rate in response to nitrogen availability, the C:N 263	

ratio for the moss and for the leaves and roots of L. speciosa was similar at both sites. For the case of the orchid, this 264	

parameter was close to the ratio of 56 measured for orchids from the Central Brazilian Amazon, a clean environment 265	

(Mardegan et al. 2011). Contrasting with the lack of response from leaves and roots, the C:N ratio of pseudobulbs 266	

was different between the sites, which could be the result of a slightly higher accumulation of nitrogen in the city. 267	

The lowest nitrogen content of 0.6% was measured for pseudobulbs in the oak forest because these organs 268	

predominantly store carbohydrates, rather than minerals (Davidson 1960; Hew and Ng 1996; Ng and Hew 2000).  269	

Plants that grow close to sources of pollution reflect the isotopic signals of the pollutants in their tissues 270	

(Stewart et al. 1995; Ammann et al. 1999; Stewart et al. 2002; Liu et al. 2008; Power and Collins 2010; Redling et 271	

al. 2013). For instance, negative isotopic values found in compounds derived from NHx (agriculture, animal 272	

manure, and sometimes vehicle exhaust) result from secondary compounds formed during reactions after emission 273	

(Redling et al. 2013). In contrast, compounds derived from the NOx that are released from industrial activities and 274	

fossil fuel burning have positive δ15N (Xiao and Liu 2002; Xiao et al. 2012). For example, δ15N of −11‰ are found 275	

for epiphytic plants growing close to a city in Brazil where the main nitrogenous pollutants are NHx (−41‰), 276	

meanwhile δ15N of plants from the field are less negative (−3.1‰; Stewart et al. 2002). For epiphytes from a Costa 277	

Rican cloud forest (low nitrogen deposition) the δ15N reaches –4‰ (Hietz et al. 2002; Wania et al. 2002). In 278	

contrast, the δ15N for spruce needles from Norway decreases from 2‰ in the proximity of a highway where nitrogen 279	

deposition is dominated by NOx to –3‰ at 1 km into the forest (Ammann et al. 1999). The negative δ15N measured 280	

in the present study for the mosses and the orchids from the oak forest suggest that these plants assimilated nitrogen 281	

from a clean environment (low nitrogen deposition). Indeed, the total emissions in the municipality where the oak 282	

forest is located amounted to a 477 ton NOx and 73 ton NH3 in 2008 (Sub-Sistema del Inventario Nacional de 283	
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Emisiones a la Atmósfera de México 2016). In contrast, positive δ15N were observed for both the moss and the 284	

orchid growing in the city, where the emissions were substantially higher than in the forest in 2008, reaching 57,081 285	

ton NOx and 2,732 ton NH3 (Sub-Sistema del Inventario Nacional de Emisiones a la Atmósfera de México 2016). 286	

The fact that the δ15N was similar among the different organs indicates that isotopic fractionation during the 287	

translocation process was very low or absent in plants exposed to the current rates of atmospheric nitrogen 288	

deposition at either the forest or the city. These observations contrast with an isotopic fractionation of 3‰ 289	

determined for L. speciosa growing under a nitrogen deposition of 80 kg N ha–1 year–1 (Díaz-Álvarez et al. 2015). 290	

 Physiological responses to climate changes over the lifespan of a plant have been studied with tree rings 291	

and cactus spines (English et al. 2007; Hietz et al. 2011; Van Der Sleen et al. 2015). Here, pseudobulb 292	

chronosequences developed over a decade effectively recorded the interannual nitrogen deposition at the two sites 293	

considered in this study. The C:N ratio observed for the series of pseudobulbs was similar between sites until 2010, 294	

when a significant decrease became apparent for the plants in the city. Presumably, this is the result of 8 years of 295	

exposure to urban nitrogen deposition. However, it was not enough to decrease the C:N ratio of pseudobulbs before 296	

2011, suggesting that the rates of nitrogen deposition in the city were only slightly higher than in the oak forest. The 297	

δ15N values confirmed that the pseudobulbs formed in 2004 and before grew at the rescue site, whereas the more 298	

recent pseudobulbs were formed in the city. It was interesting to observe that the first few pseudobulbs formed in 299	

city did not show a typical urban δ15N, but apparently the stored nitrogen that had been assimilated in the rescue site 300	

was translocated from the older pseudobulb developed in the city. Over time, the nitrogen from the rescue site was 301	

depleted, leaving the urban deposition as the only source of nitrogen for the ensuing pseudobulbs, as evidenced by 302	

the positive δ15N values of the six most recent pseudobulbs. 303	

 Isotopic analyses for L. speciosa enabled the distinction between nitrogen deposition in the city and the oak 304	

forest. Also, the C:N ratio of the series of pseudobulbs showed that deposition was already slightly higher in the city 305	

than in the oak forest, but not enough to effect physiological damage. In turn, the δ15N values of the series of 306	

pseudobulbs showed that it is indeed possible to track nitrogen deposition and detect possible changes over various 307	

years. In addition to land use and climate changes, the risk for L. speciosa will increase as the atmospheric nitrogen 308	

deposition increases above 20 kg N ha year –1 (Díaz-Álvarez et al. 2015). This is already happening in some regions 309	

of Mexico City, where nitrogen deposition rates reach 48 kg N ha–1 year –1 (Secretaría del Medio Ambiente del 310	

Distrito Federal 2012). Granted that these alarmingly high rates of nitrogen deposition do not overlap with the 311	
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distribution range of L. speciosa, but deposition rates will most likely exceed 25 kg N ha year –1 by mid-century in 312	

the regions of central Mexico where Laelia speciosa is endemic (Galloway et al. 2004; Phoenix et al. 2006; 313	

Galloway et al. 2008). Thus, L. speciosa could disappear in the following decades if necessary actions are not taken 314	

to reduce the increasing rates of nitrogen deposition in the regions where this epiphytic orchid still grows. 315	
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Table 1. Two-way ANOVA for nitrogen content, carbon content, C:N ratio and δ15N of Laelia speciosa growing in 530	

the city and the oak forest. 531	

 532	

 

 

 

Nitrogen 

content 
 

Carbon content 

 

C:N Ratio 

 

δ15N	

d.f. F P F P F p F p	

Organ 2 

 

4.07 0.001 

 

5.75 0.01 

 

21.1 0.001 

 

828 0.02	

Site 1 20.6 0.06 6.40 0.02 27.0 0.001 4.59 0.001	

Organ × Site 2 0.88 0.43 0.10 0.90 12.9 0.001 3.74 0.04	

 533	

 534	

 535	

 536	

 537	

 538	

 539	

 540	

 541	

 542	

  543	
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Table 2. Carbon and nitrogen content (dry mass basis) for plant tissue from an oak forest and from a city in 544	

Michoacán, Mexico. Data are shown as mean ± 1 s.e. (n = 4 individuals). For each element, different letters indicate 545	

statistically significant differences from pairwise Holm-Sidak tests (P < 0.05). 546	

 547	

 Oak forest   City 

 Carbon  

(% dry mass) 

Nitrogen 

(% dry mass) 

 Carbon  

(% dry mass) 

Nitrogen 

(% dry mass) 

Braunia sp. 

     Inert substrate 

     Epiphytic 

 

39.1 ± 0.24 a 

35.4 ± 0.24 a 

 

1.57 ± 0.03 c 

1.66 ± 0.34 c 

  

37.6 ± 0.32 a 

38.6 ± 0.64 a 

 

1.62 ± 0.09 c 

2.00 ± 0.05 c 

Laelia speciosa 

    Leaves 

 

45.6 ± 0.20 b 

 

1.3 ± 0.30 d 

  

44.5 ± 0.4 b 

 

1.3 ± 0.10 d 

    Pseudobulbs 44.6 ± 0.30 b 0.4 ± 0.10 e  43.4 ± 0.2 b 0.9 ± 0.10 f 

    Roots 46.0 ± 0.10 b 0.8 ± 0.10 f  45.2 ± 0.2 b 0.9 ± 0.10 f 

 548	

 549	

	  550	
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 551	

Table 3. Nested ANOVA for the elemental and isotopic composition for series of ten consecutive pseudobulbs of L. 552	
speciosa from the city and the oak forest. 553	

 554	

 555	

 556	

 557	

 558	

 559	

 560	

 561	

 562	

 563	

 564	

 565	

 566	

 567	

 568	

 569	

 570	

 571	

 572	

  573	

  
 

C:N ratio  
 
δ15N 

 
 d.f. F P F P 

Year 1  7.30 0.001  4.13 0.045 

Year × site 1  0.69 0.405  99.8 1.49 × 10–5 
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Figure 1. Morphology of Laelia speciosa showing the series of ten consecutive annually produced pseudobulbs. The 574	
most recent pseudobulb has been formed during the past year’s growing season. The number inside each pseudobulb 575	
indicates the year it was formed. 576	
 577	
Figure 2. C:N ratio and δ15N for Laelia speciosa organs and mosses growing near the orchid on the oak branches 578	
and mosses from granite or concrete from two sites in Michoacán, Mexico. Data are shown as mean ± S.E. (n = 4 579	
individuals per site). The arrows indicate the mosses growing on exposed bare rock at the oak forest or exposed on 580	
concrete at the city. 581	
 582	
Figure 3. Nitrogen content (dry mass basis) for the organs of L. speciosa from two sites in Michoacán, Mexico. 583	
Data are shown as mean ± S.E. (n = 4 individuals per site). Different letters indicate significant differences (p < 584	
0.05). 585	
 586	
Figure 4. Carbon to nitrogen ratio for the 10 most recent consecutive pseudobulbs of L. speciosa individuals from 587	
two sites in Michoacán, Mexico. Data are shown as mean ± S.E. (n = 4 individuals per site). The vertical dashed line 588	
indicates when the rescue plants were transplanted to the city. 589	
 590	
Figure 5. δ15N for the 10 most recent consecutive pseudobulbs of L. speciosa individuals from two sites in 591	
Michoacán, Mexico (see Fig. 1). Data are shown as mean ± S.E. (n = 4 individuals per site). The vertical dashed line 592	
indicates the time when the rescue plants were transplanted to the city. 593	
 594	
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are shown as mean ± S.E. (n = 4 individuals per site). Different letters indicate significant differences (p < 

0.05).  
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Carbon to nitrogen ratio for the 10 most recent consecutive pseudobulbs of L. speciosa individuals from two 
sites in Michoacán, Mexico. Data are shown as mean ± S.E. (n = 4 individuals per site). The vertical dashed 

line indicates when the rescue plants were transplanted to the city. 
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δ15N for the 10 most recent consecutive pseudobulbs of L. speciosa individuals from two sites in Michoacán, 
Mexico (see Fig. 1). Data are shown as mean ± S.E. (n = 4 individuals per site). The vertical dashed line 

indicates the time when the rescue plants were transplanted to the city.  
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